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Abstract—As online reputation systems are playing increas-
ingly important roles in reducing risks of online interactions,
attacks against such systems have evolved rapidly. Nowadays,
some powerful attacks are conducted by companies that make
profit through manipulating reputation of online items for their
customers. These items can be products (e.g. in Amazon), busi-
nesses (e.g. hotels in travel sites), and digital content (e.g. videos
in Youtube). In such attacks, colluded malicious users play well-
planned strategies to manipulate reputation of multiple target
items. To address these attacks, we propose a defense scheme
that (1) sets up heterogeneous thresholds for detecting suspicious
items and (2) identifies target items based on correlation analysis
among suspicious items. The proposed scheme and two other
comparison schemes are evaluated by a combination of real user
data and simulation data. The proposed scheme demonstrates
significant advantages in detecting malicious users, recovering
reputation scores of target items, and reducing interference to
normal items.

I. Introduction
As more people use the Internet for entertainment, building

personal relationships, and conducting businesses, how to

evaluate strangers’ quality or trustworthiness in online systems

becomes an important issue. Online reputation systems, also

referred to as online rating systems, allow users to post

their ratings/reviews on items in the system, aggregate these

ratings/reviews and assign each item with a reputation score

that indicates its quality. The items that receive user ratings

can be products (e.g. in the Amazon product rating system),

services (e.g. hotel ratings in various travel sites), users (e.g.

sellers and buyers at eBay), and digital content (e.g. video

clips at YouTube). Online reputation systems can help people

evaluate the quality of online items before transactions, and

hence greatly reduce the risks of online interactions.

More and more people get used to post their opinions

in online rating/review systems and refer to those opinions

before making their purchasing/downloading decisions. The

Pew Internet & American Life Project has found that 26% of

adult internet users in the U.S. have rated at least one product,

service, or person using online rating systems [1].

However, not all the ratings/reviews are honest. Driven

by the huge profits of online markets [2], attacks that at-

tempt to mislead users’ online decisions through dishonest

ratings/reviews are gaining popularity. Sellers at the online

marketplace boost their reputation by trading with collabora-

tors [3]. Firms post biased ratings and reviews to praise their

own products or bad-mouth the products of their competitors

[4]. There are even ratings/reviews for the products that

never exist. In the “Amazon window shop app” for iPad,

one category, called “peculiar products”, contains a lot of

kooky and fake products, such as uranium ore, or a $40

Tuscan whole milk [5]. Surprisingly, these products receive

thousands of ratings/reviews, although Amazon does not really

sell them. Attacks against reputation systems can overly inflate

or deflate item reputation scores, crash users’ confidence in

online reputation systems, eventually undermine reputation-

centric online businesses and lead to economic loss.

In this work, we define the users providing dishonest ratings

as malicious users, and the items receiving dishonest ratings

from malicious users as target items. Based on malicious

users’ capability and goals, the attacks can be roughly classi-

fied into three categories.

1. Independent attack: independent malicious users insert

dishonest ratings to mislead the reputation score of a sin-
gle item. This is the simplest and the least organized type

of attacks that mainly appears when online reputation

systems were introduced in the mid-1990s.

2. Single-target attack: colluded malicious users collab-

oratively insert dishonest ratings to mislead the reputa-

tion score of a single item. These attacks are the most

commonly known and investigated attacks. For instance,

on IMDB (a movie site owned by Amazon), a low

quality movie, Resident Evil: Afterlife, has kept an overly

inflated score of 8.5 out of 10 during the first month of

release, with more than 1,800 ratings [6]. Obviously, in

this example, the dishonest ratings overwhelm the honest

ratings in a long period of time.

3. Multiple-target attack: colluded malicious users collab-

oratively insert dishonest ratings to mislead the reputation

scores of multiple items. This type of attacks, which

is gaining popularity recently, is relatively new to the

research community and may cause severe damage to the

reputation systems. These attacks are mainly launched

by some “rating companies”, which provide “rating

services” for different customers through their affiliate

network of user IDs. For just $9.99, a company named

“IncreaseYouTubeViews.com” can provide 30 “I like”

ratings or 30 real user comments to your video clips

on YouTube. Taobao, which is the largest Internet retail

platform in China, has identified these reputation boosting

services as a severe threat [7]. It is important to point out

that malicious user IDs are often “reused” in the multiple-



target attacks. In other words, a subset of malicious users

that attacked one target item may also be used to attack

other target items.

Independent attacks can be easily addressed. In this type

of attack, dishonest ratings that are far away from the honest

opinions can be detected by various statistical methods [8],

[9], whereas independent dishonest ratings that are close

to the honest opinions usually do not cause much damage.

Therefore, the current research efforts [9]–[13] mainly focus

on single-target attacks that involve colluded malicious users

[14]. However, very limited work has been done to address

the multiple-target attacks.

Current defense schemes, mainly designed for single-target

attacks, can address the multiple-target attacks to some extent.

In particular, the rating statistics of each item can be examined

independently by existing defense methods. If a user issues

suspicious ratings to an item that is detected under attack,

the trust of this user drops. Ideally, the malicious users who

rate for multiple target items should have low trust values.

However, this approach has three major limitations.

• Most of the statistical defense schemes consider each

item equally in terms of setting detection parameters

(e.g. rating distribution parameters, detection threshold).

However, in practice, the rating statistics of different

items are not homogenous. Some items may naturally

receive highly diverse ratings while others may receive

similar ratings. Therefore, identical detection parameters

can hardly fit all items.

• Trust in raters is usually computed based on users’ past

good/bad behaviors. Malicious users can accumulate high

trust values by providing honest ratings to the items that

they are not interested in. Such type of behaviors can

make trust evaluation much less effective.

• Correlation among target items is not studied. In most

of the existing schemes, including our previous work

[15], items under strong attacks are detected, but those

under moderate or weak attacks may not be detected

even if there is overlap between the malicious users in

moderate/weak attacks and the malicious users in strong

attacks.

As a summary, existing defense schemes are not designed

for and cannot effectively address multiple-target attacks,

which are becoming important threats against online reputa-

tion systems.

In this paper, we propose the defense for multiple-target

attacks from a new angle. The proposed scheme does not

evaluate trust in raters. Instead, it sets up heterogeneous

thresholds for detecting suspicious items, and further identifies

target items based on correlation analysis among suspicious

items.

The proposed scheme is evaluated using a combination of

real user data and simulation data. Compared with the beta-

function based detection scheme [10] and the iterative refine-

ment scheme [11], the proposed scheme achieves significantly

better ROC∗ in the detection of malicious users, and has less

impact on normal items that are not under attack. Furthermore,

∗Receiver operating characteristic

its effectiveness is much less sensitive to attack scenarios and

parameters selections.

The rest of the paper is organized as follows. Section

II discusses related work, Section III introduces details of

the proposed scheme, Section IV presents experiment results,

followed by discussion in Section V and conclusion in Section

VI.
II. Related Work

To protect reputation systems, defense schemes have been

proposed from four angles.

The first angle is increasing the cost of acquiring multiple

user IDs by binding user identities with IP addresses [16] and

using network coordinates to detect sybil attacks [17].

The second angle is endogenous discounting of dishonest

ratings [18]. Methods in this category directly differentiate

dishonest ratings from normal ratings based on the statistic

features of the rating values. In a Beta-function based approach

[10], a user is determined as a malicious user if the estimated

reputation of an item rated by him/her lies outside q and (1−q)
quantile of his/her underlying rating distribution. An entropy

based approach [9] identifies ratings that bring a significant

change in the uncertainty in rating distribution as dishonest

ratings. In [8], dishonest rating analysis is conducted based

on Bayesian model.

The third angle is exogenous discounting of dishonest

ratings [18]. Methods in this category evaluate the reliability

of a given rating based on the trust/reliability of the user who

provides this rating. The iteration refinement approach pro-

posed in [11] assigns a weight to each rating according to the

“judging power” of the user who provides this rating. In [12],

a user’s trust is obtained by cumulating his/her neighbors’

beliefs through belief theory. REGRET reputation system,

proposed in [19], calculates user trust based on fuzzy logic.

Flow models, such as EigenTrust [13] and Google PageRank

[20], compute trust or reputation by transitive iteration through

looped or arbitrarily long chains.

The fourth angle is studying correlation among users to

detect dishonest ratings [15], [21]. Schemes that investigate

only correlation among individual users are not effective in

addressing multiple-target attacks. In multiple-target attacks,

many colluded malicious users may not have similar rating

behaviors because they attack different target items or different

sets of target items. What really matters is the correlation

among target items, which is not exploited in the current

schemes.

The previous schemes are designed for single-target attacks,

and have inherited limitations, when used to address multiple-

target attacks. The proposed scheme, which handles multiple-

target attacks from a new angle, can also address single-target

attacks, and is compatible with many schemes in the first,

third and fourth category. Notice that some rating sites allow to

have anonymous user ratings. The proposed scheme, as well as

many other schemes, cannot handle attacks from anonymous

users.
III. Proposed Defense Scheme

A. Overview of Defense Scheme
The proposed scheme contains two main modules: suspi-

cious item detection and item correlation analysis. The general



idea is to first preselect suspicious items as items whose

rating distributions are highly likely to be abnormal, then

conduct correlation analysis among these suspicious items and

determine the items with strong correlations as target items.

In the suspicious item detection module, there are three sub-

modules: (1) change interval detection, (2) CvT analysis and

(3) suspicious item selection. Here, CvT is the abbreviation

for Change Interval versus Threshold, which will be explained

in details in Section III-B2.

To detect suspicious items, we first detect changes in the

rating distribution for each item. In many practical reputation

systems, items have intrinsic quality, which should be reflected

in the distribution of their ratings. If there are rapid changes

in the distribution of rating values, such changes can serve as

indicators of anomaly. Therefore, the first submodule is

1. Change Interval Detection: for each item, detect its

change interval (CI), the time intervals in which rating

values “change rapidly”. Manipulation highly likely takes

place in such time intervals.

However, what kind of change is “rapid change”? The

answers are different for different items. As discussed in

Section I, rating statistics of items are not homogenous, and

an identical detection threshold cannot fit all items. The

proposed scheme addresses this problem by the second and

third submodules.

2. CvT analysis: for each item, extract its CvT feature (i.e.

how item’s CI changes with detection threshold). Then

the CvT figure is constructed to visualize CvT features for

all items in the system. From this figure, we observe that

the CvT features of normal items follow a certain pattern,

and the items whose CvT features are quite different

from others are highly suspicious. This type of analysis

and visualization has never been reported in the current

literature.

3. Suspicious Item Selection: set heterogeneous detection

thresholds according to the CvT figure and select sus-

picious items as the items with abnormal CvT features.

The suspicious item detection module can effectively detect

items whose rating statistics change abnormally. However, it

may not be able to avoid some false alarms when normal

items also experience changes due to randomness in normal

users’ rating behaviors or item quality change. The changes

in normal items can be even larger than the changes in target

items especially when malicious users conduct moderate/weak

attacks.

Recall that one important feature of multiple-target attacks

is that malicious users are often “reused”. As a consequence,

we can find correlation between two target items when some

malicious users rate both target items. This approach is par-

ticularly useful for identifying (a) target items that experience

moderate/low level of manipulation and (b) unpopular target

items that experience strong manipulation. To see this, let us

consider two example cases.

• In Case 1, an item receives 100 honest ratings and 10

dishonest ratings, and values of these dishonest ratings

are close to that of honest ratings. Whereas traditional

schemes may not discover this relatively weak attack,

the correlation analysis may find that this item is highly

correlated with another target item under strong attack.

• In Case 2, an item receives 10 honest ratings and 20

dishonest ratings. Since the dishonest ratings overwhelm

the honest ratings for this unpopular item, many tradi-

tional schemes are not effective to detect such attacks.

However, the correlation analysis may reveal that this

item and another target item share many common raters,

which leads to suspicion.

Therefore, we propose

4. Item Correlation Analysis (ICA): determine target items

and malicious users by analyzing correlation among

suspicious items.

It is important to point out that ICA is not a trivial task,

because there may only be a very small overlap between

the malicious user group attacking one target item and the

malicious user group attacking another target item.

The major components of the proposed scheme will be

described in details in Section III-B and III-C.

B. Suspicious Item Detection
To detect the suspicious items whose reputation scores are

possibly manipulated, the suspicious item detection module

is employed to (1) monitor changes in the rating distribution

(using the method in [15]) for each individual item, (2) analyze

the CvT features of all items in the system, and (3) identify

those items with abnormal CvT features as suspicious items.

1) Change Interval (CI) Detection: To manipulate item

reputation, dishonest ratings would inevitably cause changes in

rating distribution. Therefore, change detection can be used as

the first step toward anomaly detection in reputation systems.

In this work, we adopt the change detector proposed in [15].

A brief introduction of this change detector is as follows.

The rating sequence of an item is defined as all of the

ratings provided to the item ordered according to the time

when these ratings are provided. For each item, a change

detector is applied to its rating sequence. Let yk denote the

kth rating of an item’s rating sequence. Assume that the

original mean value of the ratings is μ0, and the change to

be detected is the rating mean value change that exceeds a

certain range ν. That is, the mean value after change is either

above μ+
1 = μ0 + ν or below μ−1 = μ0 − ν. The decision

functions at the kth rating are:

g+k = max((g+k−1 + yk − μ0 − ν/2), 0), (1)

g−k = max((g−k−1 − yk + μ0 − ν/2), 0), (2)

where g+k is computed to detect positive changes and g−k is

computed to detect negative changes. Here, g+k and g−k can be

calculated as soon as the kth rating arrives.

The threshold used in the change detector is denoted by h̄.

Then the alarm time ta, when the change detector raises an

alarm, is defined as:

ta = min{k : g+k ≥ h̄||g−k ≥ h̄} , (3)

which is the time when either g+k or g−k is greater than h̄.

For details of this change detection method, interested

readers can refer to [15].
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Fig. 1: Demonstration of PCI value change (as h̄ increases,

PCI drops more slowly if the signal experiences larger

changes.)

2) CvT Figure Generation: As discussed in Section III-A,

the change detection with identical threshold cannot fit all

items. Then how to set up detection thresholds for different

items? To solve this problem, we first define the Percentage

of Change Interval (PCI) as:

PCI =
total length of all detected CIs

length of the whole rating sequence
.

PCI value describes whether the rating statistics of an item
experiences long lasting changes or short random changes. As

an example, assume that we detect two change intervals (CI)

for item j when setting h̄ = k. The first CI starts at time 50

and ends at time 77, the second CI starts at time 117 and ends

at time 201, and length of the rating sequence (time between

the first rating and the last rating received for item j) is 450.

Then PCI of item j at threshold k, denoted as PCI(k, j), is

computed as
(77−50)+(201−117)

450 = 0.247.

From the definition, we can see that PCI value largely

depends on change detection threshold h̄. How PCI value

changes along with h̄ is demonstrated in Figure 1, where

item X receives both honest and dishonest ratings while item

Y receives only honest ratings. Recall that when the change

decision function gk is above h̄, a change interval is detected.

From Figure 1, two important observations are made.

• When h̄ increases, the changes with smaller amplitude

and shorter duration, which are usually caused by normal

variations, will be ignored by the change detector, which

reduces the PCI value.

• How fast the PCI value changes with the threshold

h̄ reflects whether the detected changes are smaller-

amplitude-shorter-duration or larger-amplitude-longer-

duration. In other words, if the changes in the ratings of

an item have large amplitude and sustain for sometime,

which is highly suspicious, the PCI value of this item

will drop slowly when h̄ increases.

Let CvT feature denote how PCI value changes along with

the threshold h̄. Based on the above observations, we visualize

the CvT feature of all items through the CvT figure, which is

constructed in the following 3 steps.

1. For each item, calculate the PCI value for h̄0, which is the

lowest change detector threshold. A representative value

of h̄0 is 0. In other words, we calculate PCI(h̄0, j) ∀j.

Recall that PCI(h̄i, j) denote the PCI value of item j
under change detector threshold h̄i.

2. Order items according to PCI(h̄0, j) from low to high,

and assign each item a new index, called C-index, ac-

cording to this order. The C-index is denoted by c. For

example, if item j’s PCI(h̄0, j) is the 2nd lowest, the

C-index of item j is c = 2.

3. For each item, calculate the PCI values for different

change detector thresholds. Let x-axis be the C-index c of

items, y-axis be the threshold h̄, and the color represent

value of PCI(h̄, c).

The CvT figure can be viewed as an image. An example of

the CvT figure is shown as Figure 2. The data used to generate

Figure 2 is from a cyber competition [22], which contains

ratings for 300 items. Details of this data set will be described

in Section IV-A1. The change detector threshold values are

chosen from 0 to 4, and h̄0 is 0. Figure 2 demonstrates the

CvT feature of all items. Items with large PCI values at h̄0

lie on the right side of the figure, and PCI value of each item

drops as the change detector threshold increases.

Next, we generate the contours using the contourf function

in Matlab. These contours are marked with black lines in

Figure 2. Each contour curve is composed of points with the

same PCI value. Let z denote this PCI value. A point (x, y)
on the contour curve with value z means that the item with

C-index c = x has PCI value z when the change detection

threshold h̄ = y. In other words, a contour curve clearly shows

the corresponding change detection thresholds that yield the

same PCI value for different items.

Each contour has a slope and spikes. From Figure 2, we can

observe that excluding the spikes, these contours are roughly

parallel, meaning that the slopes of different contours are

roughly the same. It indicates that when threshold h̄ increases

for a certain amount, most of the items’ PCI values drop at

similar speeds. In other words, most of the items in the system

have similar CvT features. Then how would a spike appear?

For example, when the change detector is sensitive (i.e. with

threshold h̄0 and can be triggered by small changes), the PCI

value detected for item c is between that for item c − 1 and

that for item c+ 1. As the threshold increases, the PCI value

for item c− 1 and c+ 1 quickly decreases, which is normal.

However, the PCI value for item c does not decreases as

quickly as its “neighbors” (i.e. item c−1 and item c+1). Then,

a spike will be shown for item c on the CvT figure. Recall

that target items tend to have larger-amplitude-longer-duration

changes, leading to a slow drop in PCI values. Therefore, the
items with spikes have CvT feature different from that of most
other items and are highly suspicious.

As a summary, CvT figure is constructed to visualize the

CvT features of all items from system points of view. The rich

information in the CvT figure can provide us a way to detect

target items that demonstrate abnormal CvT features.

3) Suspicious Item Selection: Due to items’ heterogeneity,

it is difficult to set up a universal detection threshold suitable

for all items in the system. This problem is rarely solved in

current reputation defense schemes.

From the explanation in the previous subsection, we can
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see that a target item tends to have a spike in the CvT figure.

Therefore, we propose to set heterogeneous thresholds for

different items according to slopes of the contours in the CvT

figure. In particular, suspicious items are selected as follows.

• After constructing the CvT figure, obtain the contour

curve that goes through the largest number of items. As

shown in Figure 2, this selected contour curve is “higher”

than other contours. The contour value is 0.0714. That

is, all the points on this contour curve have PCI value

0.0714.

• The 1st order linear regression model y = ax+b0 is used

to fit the selected contour curve, where a is the estimated

slope of the contour curve.

• Set the heterogeneous threshold for each item c as

Th(c) = ac+b0+bs, where a is the estimated slope of the

selected contour curve, c is the C-index (item index after

reorder) of an item, and bs(> 0) is called the detection
threshold offset. Note that Th(c) is roughly parallel to the

contour curve, such that the threshold for the item with

lower variation (lower C-index) is smaller than that for

the item with higher variation (higher C-index). Here, bs
is the key parameter of the proposed scheme. The larger

is bs, the less sensitive is the detector. To detect more

target items, a smaller bs can be employed.

• Suspicious items are selected as items whose PCI values

are larger than 0, when h̄ = Th(c). That is, item c is

marked as a suspicious item if PCI(Th(c), c) > 0.

We would like to emphasize that change detector threshold

(i.e. h̄, h̄0, h̄i), heterogeneous suspicious item selection thresh-

olds (i.e. Th(c)), and the detection threshold offset (i.e. bs) are

different concepts. The CvT figure is constructed by varying

h̄; the suspicious items are detected by checking whether their

PCI values at threshold Th(c) are above 0; and Th(c) is

determined by bs and the slope of the contour.

C. Item Correlation Analysis (ICA)
1) Basic Procedure of ICA: As discussed in Section

III-A, changes in normal ratings can generate false alarms.

Figure 3 shows a CvT figure with two target items: one item

(with C-index ix = 274) under strong attack and the other

item (with C-index iy = 214) under moderate attack. The

specific parameters of the strong and moderate attacks will be

presented in Section IV. We observe that item ix generates an
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obvious spike, but the spike generated by item iy is much less

obvious. If we set up the detection threshold Th(c) as shown

in Figure 3, four normal items are marked as suspicious items.

This false alarm problem is due to the fact that ratings of some

normal items can have large variations and generate spikes on

the CvT figure.

An important feature of multiple-target manipulation is that

malicious users attack multiple target items. These colluded

malicious users can lead to a correlation among those target

items. Therefore, we introduce item correlation analysis (ICA)

to identify target items and the corresponding malicious users.

Details of ICA are shown in Procedure 1 and described as

follows.

• step 1 Let Isus denote all suspicious items selected by

the suspicious item detection module. Assume that there

are s items in Isus and Isus = {i1, i2, · · · , is}.
• step 2 Calculate the item correlation for each pair of

items in Isus. Let Citem
ix,iy

denote the correlation between

item ix and item iy .

• step 3 Identify the suspicious user set, Uix,iy , which

contains the users who are suspected to attack item ix
and iy .

• step 4 Among all the item correlations calculated in step

2, obtain the maximum one as Citem
max .

• step 5 Set the threshold for identifying highly correlated

items as T corr = Citem
max · Ph, where Ph is a parameter

between 0 and 1.

• step 6 For any pairs of items, if Citem
ix,iy

> T corr, item ix
and iy are determined as target items, and the users in

Uix,iy are determined as malicious users.

As long as it is not too large or too small, the parameter

Ph in step 5 does not have major impact on the overall

performance. We studied Ph value ranging from 0 to 0.9, and

found that the proposed scheme performs quite stable when

Ph is between [0.3, 0.7]. Thus, in later experiments, we set

Ph = 0.7.

Notice that Steps 1-6 are designed to handle multiple-target

attacks, and may not be able to address single-target attacks in

which a target item is not highly correlated with other items.

Therefore, we add one additional step.

• step 7 For each item that is in Isus but not determined

as a target item yet, if its corresponding spike is higher

than Th(c) + δ, this item is also identified as a target



Procedure 1 Basic Procedure of ICA
1: Given Isus = {ix|1 ≤ x ≤ s} //suspicious item set
2: for each pair of ix and iy ∈ Isus do
3: [Citem

ix iy , Uix iy ] = Item Correlation(ix; iy)
4: end for
5: Citem

max = max1≤x≤s,1≤y≤sC
item
ix,iy where x �= y

6: T corr = Citem
max · Ph

7: Itarget = {ix, iy| Citem
ix,iy ≥ T corr}//target items

8: Umal = {Uix,iy |ix, iy ∈ Itarget}//malicious users

item. Here, δ (δ > 0) determines the sensitivity of

detecting the single-target attacks. The users who provide

suspicious ratings to this item during its change intervals

are determined as malicious users.

After this modification, the proposed scheme is extended

to handle single target attacks. Even if malicious users attack

only one target item, this item can be identified if the attack

is strong enough and leads to a high spike in the CvT figure.

2) User Distance, User Correlation and Group Corre-
lation: The most important function in the ICA analysis is

Item Correlation(ix; iy) in Procedure 1, which calculates

the correlation between items ix and iy (i.e. Citem
ix,iy

) and

determines suspicious user sets for items ix and iy (i.e. Uix,iy ).

Before discussing about this function, we first introduce some

important related concepts: user distance, user correlation and

group correlation.

Let Dup,uq denote the user distance between user up and

user uq . Assume these two users have provided ratings to m
common items, denoted by item jp,q1 , jp,q2 , · · · , jp,qm . For item

jp,qw , assume that user p provides rating value rp,w and user

q provides rating value rq,w. Then, the distance between user

up and uq is calculated as

Dup,uq =
1

m

√√√√ m∑
w=1

(rp,w − rq,w)2. (4)

Note that the Euclidean distance calculation in (4) only

considers the ratings to items that are rated by both user up

and uq . When two users do not rate any items in common,

the distance between them is set as ∞.

User correlation can be converted from user distance as:

Cuser
up,uq

=

{
0 Dup,uq > α
(Dup,uq−α)2

α2 Dup,uq ≤ α
(5)

Here, Cuser
up,uq

denotes the correlation between two users up
and uq , and α is a parameter set by system. This conversion

is nonlinear because we care more about users with small dis-

tances than users with large distances. Therefore, correlation

of user pairs with large distances (above α) is set to 0, and
(Du1,u2−α)2

α2 is used to emphasize users with small distances.

Based on user correlation Cuser
up,uq

, we calculate the group
correlation. Let Cgroup(S1;S2) denote the correlation be-

tween two user groups S1 and S2.

Cgroup(S1, S2) =
∑

up∈S1

∑
uq∈S2

Cuser
up,uq

(6)

As shown in (6), correlation between two groups is com-

puted as the sum of pairwise user correlation.

C-index 178 220 237 250 271 284
178 n/a 1.14 0.86 0.81 5.55 0.86
220 1.14 n/a 4.05 4.55 111.00 3.30
237 0.86 4.05 n/a 0.88 7.80 0.89
250 0.81 4.55 0.88 n/a 8.15 0.83
271 5.55 111.00 7.80 8.15 n/a 6.84
284 0.86 3.30 0.89 0.83 6.84 n/a

TABLE I: Correlation calculation illustration

3) Item Correlation Calculation and Malicious User
Identification: Next, we describe how the function

Item Correlation(ix; iy) calculates item correlation and de-

termines malicious users. There are 5 major steps.

First, for item ix, select all users who have rated item

ix during the change intervals of ix. Recall that the change

intervals of an item are determined by the change detector

(see Section III-B1). Let Six,CI denote these selected users.

Since dishonest ratings are likely to occur in change intervals,

Six,CI is expected to contain most of malicious users if not

all, as well as some normal users who happen to rate in the

change intervals.

Second, calculate the distance between any pairs of users

in Six,CI , and according to those distances, divide users in

Six,CI into two clusters, using the Macnaughton-smith [23]

method. Users “close” to each other are put into one cluster.

Let Six,CI
1 and Six,CI

2 denote these two clusters, respectively.

Recall that malicious users tend to have similar behavior (i.e.

shorter distance among them) and be grouped into the same

cluster. Therefore, one cluster should contain mainly malicious

users and the other should contain mainly normal users.

Third, repeat the above two steps for item iy , and generate

two clusters denoted by S
iy,CI
1 and S

iy,CI
2 .

Fourth, if some malicious users attack both item ix and

item iy , the cluster containing malicious users of item ix
and that of item iy should have larger correlation. Thus, we

calculate the following 4 group correlation values using (6).

g1,1 = Cgroup(Six,CI
1 , S

iy,CI
1 ), g1,2 = Cgroup(Six,CI

1 , S
iy,CI
2 )

g2,1 = Cgroup(Six,CI
2 , S

iy,CI
1 ), g2,2 = Cgroup(Six,CI

2 , S
iy,CI
2 ).

Then, the largest correlation value should correspond to the

two malicious user clusters. Specifically, let ga,b be the largest

one among {g1,1, g1,2, g2,1, g2,2}. Item correlation is obtained

as Citem
ix,iy

= ga,b.

Finally, the users in the clusters that yield the largest

correlation are marked as candidates of malicious users for

item pair ix and iy. That is

Uix,iy = Six,CI
a

⋃
S
iy,CI
b (7)

The output of the function Item Correlation(ix; iy) is

Citem
ix,iy

and Uix,iy . Later, if item pair ix and iy is detected as

target item pair, as in Procedure 1, Uix,iy will be considered

as malicious users.

As a summary, the main idea of ICA is to compute corre-

lation among different suspicious items, and identify highly

correlated items as target items. The computation of the item

correlation depends on the rating behavior similarity among

users, user clustering, and the “shortest” distance between user

clusters.



Using the same data that generate Figure 3, we illustrate

the results of item correlation analysis in Table I. In this case,

item with C-index 178, 220, 237, 250, 271 and 284 are in the

suspicious item set (Isus), and items with C-index 220 and 271

are target items. Table I shows the pairwise item correlation

for items in Isus. It is clearly seen that the correlation between

item 220 and 271 is much higher than that of other pairs of

items.
IV. Experiment Results

A. Testing Data Preparation and Experiment Setup
1) Attack Data Set: From 05/12/2008 to 05/29/2008, we

hold a cyber competition for collecting attack data against

an online rating system [22]. This data set has the following

features:

• The normal rating data was extracted from a real e-

commerce website, and contained ratings from 300 users

to 300 products during 150 days. The rating values are

integer values ranging from 1 to 5.

• In the cyber competition, real human participants (a)

downloaded the normal rating data set, (b) created attacks

that aimed to mislead the reputation score of item v0 (a

specific item determined by the competition rule), with

no more than 30 malicious user IDs and 100 dishonest

ratings, (c) submitted their attack data, and (d) received

feedback about the strength of their attacks and their

ranking among all participants.

Each submitted attack, referred to as a manipulation profile,

contains the following information.

• The number of malicious users used in this attack,

denoted by Nm.

• All ratings provided by the malicious user IDs. Note that

the dishonest ratings can be given to many items, not

limited to item v0.

• The Mean Offset (Mo) computed as the fair reputation of

item v0 (i.e. the mean of honest ratings) minus the mean

of dishonest ratings given to item v0.

The Nm and Mo values can roughly describe the level of

manipulation. Generally speaking, larger Nm and/or larger Mo

values mean stronger manipulation.

To construct representative data set for testing, we selected

3 subsets of attack data.

• Strong attack set, denoted by ASstr, contains all manip-

ulation profiles that has Nm = 30 and Mo between (2.5,

3]. There are 12034 such manipulation profiles.

• Moderate attack set, denoted by ASmod, contains all

manipulation profiles that has Nm = 15 and Mo between

(1.5, 2]. There are 4202 such manipulation profiles.

• Weak attack set, denoted by ASweak, contains all manip-

ulation profiles that has Nm = 10 and Mo between (1,

1.5]. There are 726 such manipulation profiles.

2) Construction of Multiple-Target Attacks: Since there

is only one target item (i.e. item v0) in the cyber competition,

we need to create attacks against multiple items in order to

test the proposed scheme against multiple-target attacks.

Besides item v0, we select one additional target item that is

similar to v0, in terms of the number/mean/variance of honest

Attack Manipulation Manipulation
Scenario profile profile

Index for item v0 for item v1
is randomly selected from

strong-strong ASstr ASstr

strong-moderate ASstr ASmod

strong- weak ASstr ASweak

moderate- moderate ASmod ASmode

TABLE II: Typical attack scenarios with two target items

ratings. This additional target item is referred to as item v1. We

then create several typical multiple-target attack scenarios that

have two target items as shown in Table II. The first column

is attack scenario type. We choose 4 typical types as strong-

strong, strong-moderate, strong-weak, and moderate-moderate,

each of which describes manipulation levels of these two

target items. The other two columns explain how to construct

multiple-target attacks based on the manipulation profiles.

For example, strong-moderate means that item v0 experi-

ences a “strong” attack and item v1 experiences a “moderate”

attack. To construct a strong-moderate attack, we first ran-

domly select a manipulation profile, denoted by MP1, from

attack data subset ASstr. Recall that the manipulation profile

fully describes how dishonest ratings are given to all items, but

the attack only targets item v0. Therefore, we need to modify

MP1 such that item v1 is also a target item. To achieve this,

we randomly select another manipulation profile, denoted by

MP2, from ASmod. For all dishonest ratings that are given

to item v0 in MP2, we modify their target (i.e. the ID of the

item that receives these ratings) from item v0 to item v1. For

all other ratings that are not given to item v0, we keep them

unchanged. These modified ratings are added to MP1. After

such modification, item v0 and v1 are both under attack in the

modified MP1.

Finally, we adjust the malicious user IDs of the dishonest

ratings for v1 such that r% of malicious users that attack item

v0 also provide ratings to item v1. The typical r% value is

chosen as 30%. For example, in the strong-moderate attack

scenario, 30 × 0.3 = 9 malicious users attack both items.

Notice that the above adjustment and modification will not hurt

the randomness of the constructed multiple-target attack files.

This is because (1) manipulation profiles MP1 and MP2 are

randomly chosen, and (2) ratings of each malicious user are

randomly assigned by participants according to their personal

preferences. Therefore, the constructed multiple-target attack

profiles can still represent the diverse attack scenarios.

As a summary, we carefully construct the testing data set

based on real user attack data to make it as realistic as possible.

(1) By selecting one item similar to item v0 as an additional

target item, it is reasonable to assume that malicious users

play similar strategies in attacking this additional target item.

(2) By randomizing attack profiles, the testing data set can

cover diverse attack strategies. Therefore, this testing data is

much closer to reality than simulated attack data, which rarely

represents real human users’ diverse attack behavior.

B. Performance Measurement
The reputation defense schemes are evaluated from several

angles.



• The defense scheme should detect malicious users ac-

curately. We use DRuser and FAuser to represent the

detection rate and false alarm rate of malicious user

detection, respectively.

We also need to know whether the undetected malicious

users cause large distortion to the final reputation scores.

Therefore, we introduce Recovered Reputation Offset (RRO).

The RRO of item ix is defined as the fair reputation of ix (i.e.

the mean of normal ratings) minus the recovered reputation

score of ix (i.e. the mean of remaining ratings after removing

detected dishonest ratings). Then, we define two additional

performance measure.

• RROv is defined as the RRO value averaged over all

target items.

• Distribution of RRO values of all items, which can show

whether the reputation scores of normal items are affected

by the defense scheme.

As a summary, the defense schemes will be evaluated by

their capability of detecting anomaly, recovering reputation

scores, and minimizing their interference to normal items.

C. Experiments and Results
In this subsection, we evaluate the performance of the

proposed scheme and compare it with two other representative

schemes. The experiments are done under the 4 typical attack

scenarios listed in Table II. All the experiments are repeated

1000 times and the average results are shown.

1) Advantage of Heterogeneous Thresholds: One of the

innovative components of the proposed scheme is to use

heterogeneous thresholds for suspicious item detection. We

show the advantage of this component by comparing

• proposed scheme: determining items in Isus using the

proposed threshold Th(c) = ac+ b0 + bs
• scheme Flat: determining items in Isus using a fixed

threshold Th′(c) = b′s.

The performance criteria are defined as

DRsus =
# of target items in Isus

total # of target items
,

FAsus =
# of normal items in Isus

total # of normal items
.

Then, ROC curves (DRsus vs. FAsus) are constructed for

the proposed scheme by varying detection threshold offset bs
and are constructed for scheme Flat by varying parameter

b′s. Figure 4 shows the ROC curves for the four typical

attack scenarios. We observe that both schemes work well

in the strong-strong attack scenario, whereas the proposed

scheme works better than scheme Flat in all other three attack

scenarios.

When the attacks against both target items are strong,

the variation in the ratings of target items is much higher

than that of normal items. In this “easy” case, flat threshold

works as good as the heterogeneous thresholds. However, if

a target item is under moderate/weak attack, the variation in

its ratings can be similar or even smaller than that of some

normal items. In this case, to achieve the same detection rate,

scheme Flat has to introduce more false alarms. Therefore,
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Fig. 4: Comparison between heterogeneous threshold and flat

threshold in terms of target item detection.

the proposed scheme has obvious advantage in the strong-

weak attack scenario, and noticeable advantage in strong-

moderate and moderate-moderate attack scenarios. Obviously,

the proposed heterogeneous threshold is more suitable for

addressing diverse attack scenarios.
2) Comparison Schemes: To demonstrate the overall per-

formance, we compare the proposed scheme with

• scheme Beta: beta-function based scheme [10].

• scheme IR: iterative refinement scheme [11].

In scheme Beta, the item reputation is computed as expecta-

tion of all its ratings which are modeled as a beta distribution.

A user is determined as a malicious user if the reputation

score of any item rated by him/her lies outside q and (1− q)
quantile of his/her underlying rating distribution. Here q is

the sensitivity parameter of scheme Beta. A smaller q leads

to a lower detection rate and a lower false alarm rate, while

a larger q leads to a higher detection rate and a higher false

alarm rate.

In scheme IR, the estimated quality of each item is com-

puted as weighted average of all ratings. Initially all of the

ratings given to an item are assigned with equal weights.

Then a user’s judging power is estimated. A user having rating

values closer to items’ estimated qualities is considered as a

user with larger judging power. In the next iteration, the weight

assigned to each rating is computed as wi = Jβ
i , where wi is

the weight for user i, Ji is the judging power of user i, and β
is the key parameter of scheme IR. As β goes up, weights of

ratings provided by users with large judging power increase.

In the following rounds, the judging power, weights, and item

reputation are continuously updated until the reputation score

converges.

Scheme Beta and scheme IR represent typical strategies in

anomaly detection/reputation recovery for online reputation

systems.
3) Malicious User Detection: In this subsection, we com-

pare the malicious user detection ROC of the proposed scheme

and that of scheme Beta. The ROC of the proposed scheme

is obtained by changing the detection threshold offset bs, and
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Fig. 5: Comparison between the proposed scheme and

scheme Beta, in terms of malicious user detection.

the ROC of scheme Beta is obtained by varying the parameter

q.

We would like to point out that the scheme IR can hardly

detect malicious users. After the reputation score converges,

only a few users have high weights, and the majority of users

have very small weights. Thus, scheme IR cannot be used

to differentiate honest users and malicious users by using

weights, and is not included in this comparison.

As shown in Figure 5, the advantage of the proposed

scheme is significant. For example, with the false alarm

rate 0.0036, the proposed scheme achieves the detection rate

of 1.0 in strong-strong attacks, 0.9023 in strong-moderate

attacks, 0.9350 in strong-weak attacks. In moderate-moderate

attacks, the highest detection rate is only 0.7224, because some

malicious users provide dishonest ratings very close to normal

ratings and are hard to detect. The scheme Beta does not have

good performance because of the features of real user attack

data. The attack data was generated by real human users, who

were smart enough to create dishonest ratings that are not too

far away from the majority’s opinion. Scheme Beta, as well as

other defense schemes that focus only on examining statistics

of the rating values, cannot effectively detect such dishonest

ratings without suffering a high false alarm rate.

4) Recovered Reputation Offset of Target Items: In this

subsection, we first examine RROv (i.e. average RRO of target

items) of all three schemes. Figure 6 shows the RROv of the

proposed scheme, scheme Beta and scheme IR for different

parameter selections. Each subplot demonstrates RROv for

one scheme. One subplot contains 4 curves, each of which

is for one attack scenario. The x-axis is the key parameter

of the scheme. For the proposed scheme (upper subplot),

parameter bs, which affects the heterogeneous threshold value

Th(c), ranges from 0 to 10. For scheme Beta (middle subplot),

parameter q ranges from 0.1 to 0.4. For scheme IR (lower

subplot), parameter β ranges from 0 to 1.

From Figure 6 we can find the best achievable RROv ,

referred to as the minimal RROv , by varying those parameters.

We make the following observations.

• Among all three schemes, the proposed scheme can
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Beta, and scheme IR in terms of RROv .
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Fig. 7: Histogram of RRO for all items.

achieve the smallest RROv in most attack scenarios.

These RROv values are between 0.01 and 0.04, which

is very low. The fair reputation of target items in the

experiments is around 4. That is, with the proposed

scheme, the undetected malicious users can mislead the

reputation score by < 1%.

• The best achievable RROv for scheme Beta and scheme

IR is also very low. However, their RROv values are

sensitive to parameter selection. For example, for slightly

different q value (e.g. q=0.175, q=0.15, in strong-strong

attack), the RROv of scheme Beta can change from

0.5839 to 0.0289.

• The RROv values of scheme IR and scheme Beta are

sensitive to different attack types. They may not perform

consistently in different attack scenarios, especially when

the optimal parameters are difficult to estimate in prac-

tice.

• The RROv of the proposed scheme is stable for either

different parameter settings or different attack scenarios.

Even if parameter bs is not optimal, the RROv will not

increase dramatically.

5) Recovered Reputation Offset of All Items: In this sub-

section, we examine whether the normal items are affected by

the defense schemes.

Figure 7 shows the histogram of RRO value of all items

when the key parameters in three schemes are chosen to

minimize RROv (i.e. bs = 0, q = 0.25 and β = 0.8), in



Measured by The proposed scheme
Detection of ROC is overwhelmingly better

malicious users (Fig. 5)
Reputation RROv achieves small minimal
recovery (Fig.6) RROv in most scenarios;
of target much less sensitive

items to parameter and
attack type change

Interference to RRO histogram causes much less
normal items (Fig. 7) interference to

TABLE III: Comparison result summary

the strong-moderate attack scenario. The following important

observations are made.

• With the proposed scheme, more than 275 items have

RRO values close to 0, and 99.67% of items have RRO

value below 0.05. This means that the proposed scheme

removes dishonest ratings (which lead to low RRO of

target items), but do not remove honest ratings of normal

items (which leads to low RRO of normal items).

• The other two schemes, however, have much worse

performance. Many normal items have non-negligible

RRO values. In scheme Beta, there are only 54% of

items have RRO value lower than 0.05. In scheme IR,

this number is 83.7%. The reputation scores of many

normal items are affected because the defense schemes

wrongly remove honest ratings.

Finally, we summarize the comparison results in Table III.

V. Discussion
The computation complexity of the proposed scheme mainly

comes from (1) change detection and (2) item correlation

analysis. The change detection, which checks all ratings in the

system, only requires very simple calculation. The amount of

calculation is similar to computing the reputation scores of

items. Recall that the reputation system needs to go through

all ratings and calculate the reputation scores of all items, even

without any defense scheme. The item correlation analysis is

only performed for items in the suspicious item set, which

contains a small number of items. The amount of computation

is not significant as long as the majority of items in the

system are not under attack. Therefore, the proposed scheme

is expected to have lower computation complexity than other

defense schemes (e.g. scheme Beta and IR) that perform

statistical analysis or even iterative computation for all items

in the system.

VI. Conclusion
In this paper, we designed an anomaly detection scheme

for online reputation systems. The propose scheme relies on

the integration of several components: time-domain change

detection, system-level visualization, heterogeneous threshold

selection, and item correlation analysis. The proposed scheme

represents a new philosophy of anomaly detection in online

reputation systems, and can address both multiple-target and

single-target attacks. Compared with scheme Beta and IR,

which do not consider heterogeneity/correlation of items, the

proposed scheme has significantly better performance in terms

of detecting malicious users and reducing impacts on normal

items. The proposed scheme also yields more stable perfor-

mance in different parameter settings and attack scenarios.
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